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We study the rate of irreversible entropy production and the entropy flux generated by low-dimensional
dynamical systems modeling transport processes induced by the simultaneous presence of an external field and
a density gradient. The key ingredient for understanding entropy balance is the coarse graining of the phase-
space density. This mimics the fact that ever refining phase-space structures caused by chaotic dynamics can
only be detected by finite resolution. Calculations are carried out for a generalized multibaker map. For the
time-reversible dissipativéhermostatedversion of the model, results of nonequilibrium thermodynamics are
recovered in the large system limit. Independent of the choice of boundary conditions, we obtain the rate of
irreversible entropy production per particlew#$D, whereu is the streaming velocitgcurrent per densityand
D is the diffusion coefficient{ S1063-651X98)09407-0

PACS numbd(s): 05.45+b, 05.20-y, 05.70.Ln, 51.10ty

I. INTRODUCTION phase-space structure. Such initial conditions cannot be real-
ized in a coarse-grained approach.
Transport models based on dynamical systems with only a In order to be able to carry out explicit calculations, we
few degrees of freedomave become a subject of intensive consider a multibaker map introduced recer]. It con-
recent studies[1-19. They illustrate how macroscopic sists of a chain oN rectangular cells of sizE=aXxb such

transport coefficients are related to the properties of the mi'Ehat the phase space is a rectangle of Biz&b in the (x,y)

croscopic dynamics. It is a remarkable discovery that in Chaplane. The average phase-space dengify, in cell m(1

; ; N
otic dynamical systems a rate of irreversible entropy produc-gmg N) is called thecell density and the sun'>p, 10

. ; S amounts to the total number of particles in the sysfaa].
tion can.bg deflne_d2,4,5,?,20—31) which is, in the I_grg_e Coarse graining is carried out mvery cellafter each time
system limit, consistent with the results of nonequilibrium step. The central object of our investigation is tearse-

thermodynamics. However, the choice of the entropy f0rgrained entropy § of cell m defined by using the cell den-
which the above statement holds has long been controversiality o, as

Recently, a coarse-grained entropy has been prop@ied

23,25,26,29 (for a review on general considerations, cf. Sw=—T'emingm. @

[30]). The first attempt to derive a complete entropy balanceye claim that the proper thermodynamic entropy of a large
equation for such an entropy is due to Gasp@| for a  system consisting dili>1 cells is

map modeling pure diffusion. In the most general setting,

however, two types of currents are present: a drift current
induced by an external field, and a diffusion current due to a
density gradient. The aim of the present paper is to show that .
(i) an entropy defined with respect to coarse-grained phasd? these equations the Boltzmann constanhas been sup-

space densities is the appropriate analog of the thermod fess??’ for convenience. .The expressions we obtain for
. L - . . uantities having a well-defined large system limit are mean-
namic entropy also in this case, afij the microscopic dy-

. ) S X ingful since they turn out to be independent of the particular
namics has to have @versible[31] dissipation mechanism chgoice of the cgarse grainingf. Sec.pVIII). P

in order to have a macroscopic limit consistent with thermo- 5 change ofS,,, can only be due to a temporal variation of
dynamics. The deviation from phase-space conservatioghe cell density. This entropy change can be decomposed
should model the effect of a thermosfat1,7. ~into an entropy fluxthrough the boundaries of ceth and

It is essential for the definition of a thermodynamically another contribution, which will be called tHereversible
relevant entropy that it is independent of time in a macro-entropy production Even when the system is in a steady
scopically stationary state. A coarse-grained entropy fulfillsstate there can be an entropy flux flowing through the bound-
this requirement. This choice is physically motivated by thearies. This contribution to the change of entropy must then
finite resolution of any observation. The use of coarsebe counterbalanced by the irreversible entropy production.
grained entropies also avoids the well-known objectionThe latter is caused by averaging over the inhomogeneities
against the validity of statistical averages due to Poincargenerated by the dynamics in the phase-space density
recurrences because for strongly chaotic systems recurrenceg,(x,y) of cell m. The two contributions to the full entropy
can only occur for initial distributions with arbitrarily fine change will be computed based on fBibbs entropy

N
S= mz=1 Sy, )
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® ervoirs go over into expressions well known from nonequi-
S :—f | om(X,y)Ing n(x,y)dxdy (3 librium thermodynamics. The model we present provides

cetm thus a low-dimensional example from which laws can be
of cell m. derived[29] that are commonly believef85] to be conse-

For a steady state this entropy eventually has a negativ@uénces of large phase-space dimensions. _
time derivative in a dynamical system, which has been ar- The paper is organized as follows. In Sec. Il we give a
gued to be related to the irreversible entropy productiorPri€f summary of the classical nonequilibrium thermody-
[2,4,20,29. The Gibbs entropy, however, does not fulfill the namics treatm(_ant of transpprt dug to both drift and diffusion.
thermodynamic requirements for a well-defined entropy!hen the multibaker map is definégec. 1l), and the dy-
since, in nonequilibrium systems, it is not bounded from be-namics of the cell densitigSec. IV) and the entropy balance
low. In a steady state of an externally driven thermostategduation(Sec. V) are derived. The rate of irreversible en-
system[2] or in open systemE21,25 it decreases at a con- tropy_ production is compgte_d in Sec. VI with a special em-
stant rate. This is due to the presence of an attractor or Bhasis on the macroscopic limit. The expressions for the en-
saddle in the phase space. A proper modeling of transport biyoPY flux are discussed in Sec. V. In particular, we show
means of dynamical systems requires, in our view, rtie- ow it can be spll_t into flows into particle reservoirs and into
ing property[33] of the dynamics. Since this implies chao- & heat bath._ The independence of the_ res_ults from the cho!ce
ticity, the above mentioned attractor or saddle is a strang8f the partition used for coarse graining is demonstrated in
invariant set and generates fractal structures in the phaseeC: VIl Finally, the physical picture emerging from these
space density on ever-refining scales during time evolutionf/indings is discussed in the concluding Sec. IX.

Our goal will be to compare the difference between the
Gibbs entropy, S{¢, and the thermodynamically well- Il. NONEQUILIBRIUM THERMODYNAMICS
behaved coarse-grained entrofy,, for the multibaker map.
This allows us to identify the entropy flux and the irrevers-
ible entropy production of arbitrary steady and non-steady
states. To make contact with nonequilibrium thermodynam
ics, we consider the macroscopic limit where the cell size
is much smaller than the linear site=Na of the system
(N>1) and the time unit- of the dynamics is much shorter
than that of the macroscopic relaxations. In this limit bath
and 7 tend to zero,

In this section we recall the thermodynamic description of
transport in the case when drift and diffusion currents are
simultaneously presenB5]. The temperaturd of the sys-
tem will be kept spatially constant throughout the system
(i.e., systems with temperature gradients will not be consid-
ered, and we use the laws of nonequilibrium thermodynam-
ics and linear response. We stress, however, that in spite of
these assumptions for the derivation, the macroscopic ex-
pressions can very well be of more general validity. This is
4) indeed the case for some of them, as will become clear by

comparison with the results found for the multibaker map.
while the transport parameters are kept finite. The results are
expected to be independent of the order of the limits. Later A. Mass conservation

ggﬁ;litlﬁntigv'llilm?ftfi ge fnleZLngggq'Sem;fgpsﬂﬂfti;We _ _The conductivityo is the transport_ cc_)efficient that quan-
convenient for technicai reasons, and is appeéling since it|f|e§ the amount of a current densilyin response to an
the limit r—0 the transport roceés is d bed by a Mast Qpphed thermodynamic forcé. In the presence of a gradient

. port process Is described by a Mastely o hemical potentialg) and an external forceH) this
equation(see[34] for a general discussion of these linits leads to[35]

In the double limit(4) the transport process becomes
compatible with an advection-diffusior{Fokker-Planck j=0TX=0(E—dyu). (7)
equation[17] describing the time evolution of the distribu-
tion of mass density(x) along thex axis[i.e., of the pro-  In the present paper we restrict ourselves to cases where the
jection of the phase-space densityn the direction of trans-  external field and the density gradient are both parallel to the
port] as x axes so thatr is a scalar.
5 ] Next, we rewrite the current in a convenient form. Sub-
dp(X,t)=—vdxp(X,) + Ddxp(X,t)=—dyj(X,t). (5  stituting the thermodynamic expression for the diffusion co-
efficient

a—0, 70,

Herewv, the drift coefficient(biag, andD, the diffusion co-
efficient, are the two parameters characterizing macroscopic au
transport, and D=0c— (8)
Jap T
j(x,t)=vp(x,t) —Ddyp(X,t) ® , _
into Eq. (7) we find thatj=cE—Dd,p. Consequently, the

denotes the current density. The mass and charge of particlestal currentj is the sum of thaliffusion current— D d,p and
are set to unity so that mass, number, and charge densitigse drift current oE. By introducing the drift velocity
are the same throughout this paper. Note, however, the dif-
ferent symbolsp and ¢ used for the mass and phase-space v=uoE=0cE/p, 9
densities, respectively.

The expressions we shall obtain for the irreversible enwhere uq is the mobility of the particles, we find that the
tropy production and for the entropy fluxes into external res-streaming velocity
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D. Irreversible entropy production

_J
=5 (10 In the regime of linear response, the rate of irreversible
entropy productionr(" is the product of the current density
takes the form j and the thermodynamic driving foréé [35],
Jd (irr) — &
u=0-D2%2. (11) o =X (16)

) N ] o In view of Eq. (7), this leads to
This expresses a competition between drift and diffusion. In

equilibrium we have a stationary state witk 0. In that case _ iz 2
the field exactly compensates the density gradient, and a pro- ‘T(Irr):ﬁ =D (17)
file of the mass density sets in that corresponds to the baro- P

metric formula. . : - .
where, again, we have used Einstein’s relation.

With these substitutions the conservation of particles We shall also be interested in the rate of entro roduc-
leads to a continuity equatios,p=—d,j, which for one- . (im ) . . Py p
fion P™ per particle. This can be written as

dimensional transport corresponds to the advection-diffusio

(Fokker-Planck equation(5). oM 2
PiM=—— = —, (18)
B. Entropy balance p D

_ In every fixed volumeV a global entropy balance equa- gesides the diffusion coefficient, it only depends on the

tion streaming velocityu [Eq. (11)]. Expression(18) does not
dS d.S dS contain the temperature. Therefore, this form is particularly
R (12)  suited for the use in dynamical systen®™ has been ar-
dt dt dt gued[29] to be well-defined also for large systems with ab-

holds[35], expressing that the total change of the thermody—Sorbing boundarieevhere no steady states exjsind is thus

namic entropyS is the sum of a flow of entropyl,S/dt a good quantity for the comparison of irreversible entropy
across the borders into the volume, and the rate of irrever roduction in systems subjected to different boundary condi-

ible entropy productiond;S/dt=0. In a nonequilibrium 1ons.

steady statelS/dt=0, and the flow balances the irreversible

entropy production. Ill. THE MULTIBAKER MAP
The entropy balance per unit volume is obtained by divid-

ing Eq. (12 by V., Baker maps are known to be prototypes of strongly cha-

otic systemg33]. Multibaker maps are a generalization tai-
d/s . lored to model transport procesddst,15,17,2%
ﬁ(V) =P+ gm, (13) The system consists of a chain of identical cgisg.
1(a)]. The action of the map on a ceth (0<m<N+1) is
where® denotes the entropy flux entering the system, andictorially defined in Fig. ). Every time the square is di-
oM the rate of irreversible entropy production per unit vol- Vided intok+2 vertical columns. The rightmosteftmos}
ume. (The latter will always be denoted hy(™ to avoid column of widthsx(s,) is mapped onto a strip of width

confusion in the notation with the conductivity.) and heightsg (s.) in the square to the righfieft). These
columns are responsible for transport in one time stephe
C. Entropy flux middle columns of widths,, ... s, stay inside the same
. ] cell. They are transformed into strips of widthand respec-
¢ _bTi:_e entropy flux can be spli85] into a convective con- tive heights,, . .. sy, and model the chaotic motiorot con-
ribution tributing to transport during a single iteration. We will only
PCOM =4 i (c+Inp)] (14) consider maps with global phase-space conservation, which
X 1 .
requires

wherec is a constant, characterizing the entropy carried by

the flow of particles, and a terd("®® accounting for a heat X

flux. For a system at a constant temperafliresubjected to ;1 SitS . tsg=a, (199
an external field, the latter contribution to the entropy flow

corresponds to the heat flow, which dissipates the work done K

by the external field into a thermostaloule’'s hegt We 2 S+S te=p (19b)
write this entropy flux as o e R

e — _ ? __ % i, (15) The local phase-space contraction rates are
where we used the definition of the drif2) and Einstein’s o=— Emﬁ i=1,...k, (203

relationpD = o T to arrive at the last equality. T bs’



PRE 58 ENTROPY BALANCE IN THE PRESENCE OF DRIFT ... 1675

(a) D 1 av  ? 29
—a——a—+—a—i —a—i r=—J_ 1+ — +—
| % a?\” 2D 2D)" e
€5 YTy' €35
5 8(} 1 2 3 "" N N-g ? | D av + 7'1)2 22b
m= + =—1- — 4+ —
a2 2D 2D/’ (22h)
(b) A These general relations connect the transition probabilities
g; and | of the microscopic dynamics with the macroscopic
o2 e | 3 : : S transport parameters and D. However, they do not yet
R imply the existence of a macroscopic transport equation. It is
15088 S | only in the macroscopic limi¢4) where the dynamics of the

m m1 i m i m# random walk model is governed by such an equation, hamely
by the Fokker-Planck equatidi).
FIG. 1. Graphical illustration of the action of the multibaker  To carry out the macroscopic limit it is convenient to
map with two internal stripsk=2). (a) The mapping is defined on L~ ~ ~_ o~
a domain ofN identical rectangular cells of sizex b, with bound- ~ EXPresSs the heighip=br ands, =bl in a way analogous to
ary condition imposed on the density of two additional cells 0 anqu' (22) by introducing the parametedsande,
N+ 1. (b) Action of the map on any of the cellm=1, ... N. Four

columns are squeezed and stretched to obtain vertical strips of ?:JE 1+Ea_v+l (233
width a. The two columns of widths; ands, are transformed to a? 2D 2D}/’

strips of heightle ands~2, respectively, which stay inside the same

cell; the other two columns of width; ands, are transformed to _ oD av 7102

strips of heightsy ands, and leave the square to the right and the I=J 2\ 20 TS (23b

left, respectively. Note the corresponding free spaces to which col-

umns from the neighboring boxes are mapped. We only consider ~ . . .
~ o~~~ . Here,J=(r+1)/(r +1) is the average Jacobian on the union
maps wheres +s;+s,+sg=Db so that phase-space volume is pre-

served globallylocally, however, contraction or expansion will oc- of strlp_R andL. In view of Eq.(19D), J#1 |mpl|es that the_
cun. dynamics cannot be phase-space preserving on the inner

stripsi=1, ... k. The parameter
1 as 17-T
=——=In—, 20b =-
oL T bSL ( ) € Ir=] (24)
1 as measures the deviation from uniform phase-space contrac-
o= — _|nﬁ_ (209  tion on the stripR andL. Fore=1 the Jacobians of these
T bsg strips are identical, foe=—1 they are reciprocals of one
another.

The multibaker map possesses a phase-space density Depending on the choice of the contraction rates, different
om(x,y) that can be assumed to take, in each cell, constaritansport dynamics can be modeled as follows.
values along the direction. For such a distribution, a point (i) Phase-space preservifigamiltoniar) dynamics:
(x,y) of cell m is mapped, in one step of iteration, to cell _
m—1 or m+1 with the respective transition probabilities o =0g=0;=0, i=1,...k (253
=sgr/a andl =s; /a. The difference — | between these tran- -~ o~
sition probabilities gives rise to a drift current, while a dif- 9=1, r=r,I=l,e=1). o
fusion current can be induced by density differences among (i) Dissipative dynamics with time reversal symmetry:
cells.

The cell-to-cell dynamics of the model is equivalent to a oR= _UL:Em[, 0,=0, i=1,...k (25
random walk with fixed step lengta and transition prob- 7
abilitiesr and|. Such random walks are characterized by
well-defined drift and diffusion coefficientsv(and D),
which can be expressed in termsroénd| as[36]

(J=1,7=1T=r,e=—1). This choice mimics the effect of
a thermostaf29]. Indeed, a map modeling driven thermo-
stated systems has to be area-contractigpanding if the
trajectory moves in the direction ¢hgainst the bias in order
r—l= Zv' (219  to model slowing down(acceleration of particles moving

a parallel (antiparalle] to the external fieldcf. [2,1,7]), while
it has to preserve the volume of phase-space elements not

2 2 displaced with respect to the field. Consequently, we require
r+l= — D+ —2v2, (21b o;=0 for i=1,... k. Furthermore, the local contraction
a a ratesog and o for making a step to the right or to the left,

respectively, should add up to zemwg+ o =0, so that the
or overall dissipation vanishes for a closed trajectory. It is
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worth noting that the map is then reversible in the sense athrough the left and right boundaries of ceil| respectively.
Ref.[37], i.e., the time reversed dynamics is identical to theNote that the currents are defined with respect to the mass
direct one up to a geometrical transformati@m our case it  density, and, by definition,=j.._,. Taking into account
is a reflection at the diagonal of every geflhis is consistent  Eq. (194, one can express the evolution equation of the den-
with the behavior of thermostats constructed for continuousity (26) as
time systemg2].

(i) Phase-space preserving dynamics on the inner strips Pm~ Pm im=im

only: T T a (29)

o ¥ —og#¥0, 0;=0, i=1,...k (259  which is a discrete continuity equation. It goes over into the
advection-diffusion equatiotb) in the macroscopic limit4),
(J=1,e# *1). This case has similarities with the thermo- whenbg,=p,—p(x=ma) and j,,— j(x=ma). Equation
stating algorithm but does not fulfill time reversibility. We (29) can be rewritten in the form
consider it as a model of improper thermostating. L
Om Pm . dm—im

T
IV. MASS CONSERVATION m Pm apm

=1-7Yny. (30

In this section, the time evolution of the coarse-grainedHere,y,, is a local decay rate characterizing the relaxation of
densities is discussed. We consider a single gebf the  a cell density towards its stationary value. It vanishes in any
multibaker map with cell densitp,,. Moreover, the mass stationary state. Note that the ratio of two cell densities is the
density per unit length of the cell correspondd@,,/a, i.e., same as the ratio of the corresponding mass densities.

to the number of particles in ceth divided by its width. The average local streaming velocity is defined as

Note thatp,, differs only by a factob from the cell density: L

bom=pm- In general, the cell density,, after a single time — Imtim 31

step will differ from g, due to the outflow to and the inflow Um= 20m (31)
from the neighboring cells. The conservation of probability

requires With these definitions the ratios between densities of neigh-

boring cells can be expressed as

k
Si

Qéﬁ(E —0mt+rOm_1H10msn- (26) Qm—lzpm—lzl_ = 7

<l a o o T 1+|aum TRAIE (323
This is the basic dynamical equation for the cell density. In a

X , Om+1 Pm+1 T T— T

stationary statep/,=¢@.,. Note that the parentheses equals 0 = p =T 1- aum— o Ym|- (32b
m m

1—(r+I) because of Eq(193, and the dynamics is com-

pletely determined by the transition probabilitiesindl. The above relations can be considerably simplified in a

The system will be subjected to flux boundary conditionsgieady state, where the cell densities are independent of time
that model the contact with two particle reservoirs at thegrfﬂzeml Then the current density

ends:
. a a
00=0L, ON+1=0R> (27 J:;(I’pm,l—|pm)=;(I’pm—|pm+1)Equm (33

where the two densitiepr=¢ are kept constant. These s homogeneous in space. Note, however, that the streaming

boundary condmons_ are convenient since @f& t_hey veIocityUm=um can still depend om because of a spatial
allow nonzero density gradients and related diffusion Cur'dependence ob
m-

rents in th_e system, even in stee_ldy states. As fgr as the For the coarse-grained invariant denditiye cell as well
coarse-grained densities are considered, the special casea%f the mass densjtyf a steady state with flux boundary

er=0.#0 is equivalent to penodlc bour_ldary conditions. I_n_ conditions we obtain a geometrical progression along the
that case the steady state is characterized by cell dens't'%ﬁain'

that do not depend on the spatial positiae., the indexm).

In such steady states there is only a drift current. r\m
In a general non-steady-state one has to distinguish the pm=pL—C+C I_) : (34)
currents
where
= o) (284
= — r 1
Jm T Pm-17"1Pm PR—PL
c=—"—7"—. (35
(r/HN+1—1
and

This general result contains two well-known limiting cases.
In the equilibrium state without current it reduces to a dis-

a
- + _ _
Jm= T(rpm pmy1) (28b) cretized versionp,,=p,(r/I)™ of the barometric formula.
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For a steady state without drift.e., in the limitr —1) one  entropy because different strips inside gulicarry densities
recovers Fick's lv — a linear density profile. different from the initiale,,, namelyo,_.r/r on stripR,

I/T on stripL, and,s/S; on stripsi=1, ... k. Thus,
V. ENTROPY BALANCE \?v?olbtain P QSIS P

the entropy —I'g,lng,. In this section we assume that S =T
coarse graining takes place instantaneously after each itera-™
tion. Thus, every iteration of the map starts with a homoge-

Om>

The entropy balance equation is the analog of (£6) for [

S; bs r
Eln Om—~| |+ Om_1rinl Om_1=
as r

neous phase-space density in each cell. The chan§g of
one time step can have several reasons. +Om+1lIn Ome1g | (- (40
(i) A temporal change of the cell densigy, into ¢, leads
to a new coarse-grained entropy This expression is markedly different fro8},, and the dif-
S =-Tollno/. (36) ference
The difference AiSp=5,—S®" (42)
AS,=S/,—Sn (37 is related to the irreversible entropy production as will be

. ) discussed below.
is the temporal change of the coarse-grained entropy. It can T find a balance equation for the entropy, we notice that
be used as a proper generalization of the full time derivativgy means of Egs.(39), (40), and (1) the entropies

of the entropy appearing on the left-hand side of 8¢). (G)'
(ii) Part of the temporal change of the coarse-grained eng'm » AeSm, andSy, are related to each other as

tropy is due to an entropy flux through the boundaries of the

cell. Indeed the columns in calh are mapped partially onto S’ —AeSn=Sn—Temx. (42)
strips in the neighboring cellef. Fig. 1(b)], leading to an

entropy flux AS,,. Correspondingly, regions from the Where

neighboring cells are mapped into cetll, giving rise to a ~

flux AS;,. The entropy flowing out of celn is related to the __ 12 iln(ﬁ) 43
densities of the columnk and R beforethe action of the X ™ a \bs

mapping:
denotes the average phase-space contraction rate on the strips
ASou=—T(@mrngm+ emlingm). (388 j_1 ... k. Subtracting Eq(42) from S, we find

We define the entropy inflow as the entropy content of the

stripsR andL coming from cellsm—1 andm+ 1, respec-

g\]@?’é"ﬁ}&é?i'gncgptt;'g%'gn ?fl:ﬁgg i’nht(reogt)r/i fI:)é;/:\r/:\l‘uaetgd Dividing this equation byr, we see that it is of the same
pp ~ P ' P P structure as Eq(12) provided thaty=0. Thus, we can find

tive width sg ands, and carry the densitiegn,1r/r and g analogy with the thermodynamic entropy balance only if
©m+1l/1. This leads to the internal dynamics is phase-space presenfidgmil-
tonian, i.e., if

AS=ASHTA S —Tonx. (44)

AS,=-T

|
T Om+1l |n( Qm+1~|‘) -
(38b

r
—41rln 1= ~
Om-1 (Qm lr as:bS (45)

_ _ In the following we therefore focus on systems where this
In a time step the net entropy flow into the cell through thecondition holds. In combination with Eq19) this implies

boundaries is thus that the average Jacobian on the union of stRpsndL has
to be unity:J=1. In physical terms, conditiofd5) ensures
AeSm=ASp~ASout- (39 that the internal dynamics of a cell does not contribute to

Note that a part of this entropy flow is due to an exchange o ntropy qhange_s. The mixing of phase-space_ densities be-
- ; : . ween neighboring cells, i.e., thiansport processs respon-
particles between neighboring cells. Another part of it de-

scribes the entropy flowing into or out of the thermostat tOSIb\I/(\e/iI?]rc%ILccjirtlgﬁié)ICvsr:‘itrrl(zipt)ﬁat
which the cells are coupled. In particular, the factofsand
I/T in Eq. (38b) arise from such contribution€or further A;S,
discussions see Sec. Vil =0 (46)

(ii ) In addition to the flux, there is a change of entropy in
a cell due to coarse graining. In order to see how this can bg the dynamical-system analog of irreversible entropy pro-
taken into account, let us first work out the change in thejyction. Its positivity is due to the fact that the Gibbs entropy
Gibbs entropy. With a uniform initial density, the entropy contains in general more information on the phase-space
SST?” inside cellm after one time step differs from the initial structures than the coarse-grained entropy.
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In particular, in a steady state and with homogeneous i
tial density, for whichS,,= S, = S+ S(®)’ | the irreversible
entropy production

ASy S-S

T

AS©

(47)

T T

coincides with thenegativetime derivative of the Gibbs en-
tropy. This is in agreement with a recent result for gene
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ni- Finally, we note that the particular expressions used for
the value of the entropy and its temporal change still depend
on our choice of the coarse graining unit as a cell. This
dependence seems to be much weaker for the temporal
changes than for the entropy itself. In particular, we show in
Sec. VIII that in the macroscopic limi@) the flux and the
irreversible entropy production go over into forms indepen-
dent of the type of coarse graining.

ral VI. IRREVERSIBLE ENTROPY PRODUCTION

dynamical systemf21], and with the observations based on

thermostated molecular-dynamics simulatiphg]. The use
of the coarse-grained entropy provides a natural framew
to derive this result.

P(irr): AISm _ E Om-1

rin—

rom-1
AL

Substituting Eqs(26) and (40) into the expressiorn41)
orfor A;S;, and using Eqs(45) and(199 again, we obtain for
the rate of specific irreversible entropy production in cell

Om+1

(48)

m o o,

T

Om

In this section, we evaluate("™ in the general setting of
transport parametets andD.

First, we use Eq922) and(23) to express the microscop

Mom

Om

the multibaker, and discuss the macroscopic(fijribr fixed

ic parameters, T, T in terms of the discrete unitsanda of

time and lengths, respectively, andwfandD. By taking into account also relatiori80) and (329 for the density ratios in
terms of the average streaming velocity and the local decay rate, we obtain

a| — w?
pin_ D) |y, 2 2u,—v—a +12) In 1+52Um_v_a7m+?)
m =2 2D\ "™ Ym va 72
1+€ﬁ+ﬁ
a| — 2
al _ 02 1—ﬁ<2um—v+aym—?) 1
+1—E(2Um—v+aym—?) In pa— —;[1—7m7']|n[1—7m7]. (49
1—65-1—5

Note that this expression is an even function of the microscopic length acalehat the corrections to the macroscopic limit
a,7—0 can only contain even powers af(the reason is that,, andv are odd functions o). Moreover, by a rearrangement
of the logarithms one can show that the terms in braces are at least oBérdler, even the lowest order correctionsriscale
like ra2. Consequently, the macroscopic limit does not depend on the order of thedimiBsand r— 0. We first carry out

the limit 7— 0. All terms containing positive powers efcan
of the equation onlyy,, survives. Moreover, in the braces th

be neglected in this limit. In the last term on the right-hand side
e local relaxation fgt@nly appears as a product wigh/D, i.e.,

with the microscopic time scale governing the diffusion process. The latter is small on the macroscopig,sEdR<1.
Therefore, it is sufficient to evaluataﬂ'{r) in leading order iny,,, which yields

a va a 2
B 1+ 5= (2Up=0) | [ 1=eos o 1- ﬁ(2um—v))
m 2a a va 2" eva)?
1—5(2Um—v) l+65 “|\2p
a 2
o 1_(5(2Um_v))
o eav |2 (50
2D

Here, we have dropped terms that are of orgiéaZ/D at least. Besides the cell size this expression depends on the
macroscopic length scaldg=D/v and |,=D/u,, characterizing the bias and the streaming. In the large system limit
l,.In>a, we obtain, by expandin@f,'{’) in powers of the small dimensionless parame#dis anda/l,,,
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4

Un~ 5 +higher-order terms. (51)

Taking the macroscopic limi4) we see that a cell size in- production even though there is a nonvanishing current. This
dependent limit situation corresponds to a biased Hamiltonian dynamics with
a constant average density in the cells.

i L 1+e |?
Pm=xwa=p [UXD——F—0 VII. ENTROPY FLUX
17 1-e 1 2 The entropy flow Egs.(39) and(38)] through the bound-
=Dl 3~ D maxg(x,t) (52 aries of cellm,
r
exists. AeSp=T (f+|)Qm|an—er1|n( le:>
Note that the relaxation ratg,, only appears in the cor- r

rections to expressiofb2). This implies that in the macro- |
scopi(_: limit [when y,— — d/dng(x,t)] we find identical ex- _|Qm+lln< Qm+1:)
pressions for the entropy production in steady and non-

steady-states. The only difference between these states is the o o )
implication of nonstationarity on thglobal profile of the ~ can be split into two contributions, one depending on the
streaming velocity. Far away from the steady state, howevefransition probabilities, | (and on the densitigonly, and

: (53

In the remainder of this section we discuss different spe- A
cial cases of the expression H§1) which also allow us to ‘DmE:—:'n:q’%)Jr@(rﬁ) (54)

illustrate the physical content of the equation, and to make
contact with previous results.

First, we consider the thermostated case— 1. For this
choice the leading contribution t8™ coincides with the

with

4+ L
thermodynamic resultl8). It is augmented by a finite size q;ﬁn”:J—mlngmH— J—mlngm,lJr Pm IIn Om +rin @m )
correction that is positive in a steady state, and vanishes only a a T m-1  @mi1
in the equilibrium states,,=0. Note that Eq(18) can only (553
be recovered for this particular choice ef Only proper
thermostating can therefore yield results consistent with non- @__Pm[C@m-1 T Cme1 |

o ) D rins+ ln= |, (55b)
equilibrium thermodynamics. T\ Om r  ©@m [

Another case of interest is=1. In this case we find in
leading orderPEf{’)= D(a,e/0)? [cf. Eq.(52)], i.e., only the ~ where we used the definitiq@8) of the currents through the
diffusion current contributes to the entropy production. Thisrespective boundaries of a cell.
implies that transport in driven systems# 0, cannotad- We evaluate the macroscopic limit of both contributions
equately be described in the framework of purely Hamil-to the entropy flux separately. Substituting E2R) and tak-
tonian systemsgfor more details see the Discussjoffor e  ing 7—0, the former expression can be rewritten as
arbitrary andv =0, on the other hand, Ed51) coincides L 4 o
with the expression derived by Gasp#2é] for the unbiased pL— Jn = Im Jm, Pm+1  Jm, Pm
. . . e . =——(1+Ing,)+ —In +—In
case, including the leading order finite size correction. m a a  pm a Pm-1
Values of e different from =1 (improper thermostating
do not have immediate relevance to classical thermodynam- D
ics. They represent nevertheless interesting cases in which + ;
the current-free steady staig,=0 can be accompanied by a
nonvanishing irreversible entropy production.
There is a special value of the currgnt o, v(1+¢€)/2, " 2a
where the irreversible entropy production vanishes in a
steady state even though the current might be nonvanishingn the large system limia—0, Whenjéﬂj(xzma) and
This condition onj corresponds toi,=v(1+€)/2, irrespec-  bo,=p,— p(x=ma), the first two terms represent the di-
tive of m. Since the current is constant in a steady state, thgergence ofj (1+Ing), and the rest can be combined to ob-
density must not depend am, either. As a consequence, tain the simple expression
there is just one nontrivial stationary stage,= const for all
m, un,=v, and e=1, which does not give rise to entropy OV (x,t)=adj(x,D)[1+Ine(x,t)]—vp(x,)}, (57)

2

Pm

Pmin +(Pm+1+Pm1_ZPm)}
Pm+1Pm-1

(56)

Pm+1
Pmlnﬁ"' (Pm+1— Pml)}-

m—
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wherex=ma, andt is the time instant of observation. p q
The second contributio®(?) of Eq. (54) reduces, in view = a0
of Egs.(22) and (23), for 7—0 to =R
1 R
1+ av
D (2Up—0v—aym)a 2D . T
@y ty= _ P2 m ma 8n R
® . (x,t) o2 {14— °D IP1+ - 1R
T5) 11
av Si L.
— - R
2u,—v+ayy)a 2D
+1- (U Ym) In . (58 S oL
2D 1 av L
€2D T T

FIG. 2. Notations used to describe the level-2 partitioning of a
cell. Every strip is labeled by the two-letter sequemcq, where
p,ge{L,1,... k,R} label the level-2 strips g stands for the
level-2 strips within level-1 strips selected by the laggl To illus-
trate the use of these labels, the heights of a few strips are indicated
at the left side of the box.

If, in addition, a—0, it is found to be proportional to
l-e:

,
(3+6)p(>;,;)v _l(x[,)t)v

dA(x,t)=(1—¢) ) (59

Together, Egs(57) and (59) imply in the macroscopic

imi underlying map. Consequently, the inhomogeneities in the
imit

densities along thg direction play an essential role for the
determination of the heat flux. It cannot be derived from the
dynamics projected to tha& axis (i.e., from the Fokker-
Planck equationalone.

Q(x,) =, {j (X, )[1+Ine(X,t) ]} — ev dyp(X,1)

B p(x,t)v?

o (17’

(60)

VIIl. STRUCTURAL STABILITY OF THE MACROSCOPIC
as the leading order contribution of the entropy flow through RESULTS
the boundaries of ceth=x/a.

The first term of Eq(60), In order to be relevant for a thermodynamic description of

transport, the results exposed above must not depend on de-
adi(x,)[1+Ing(x,t)]}, tails of the procedure for coarse graining. To test whether

this is indeed the case we consider the entropy balance for
is a spatial derivative, and can therefore be interpreted as entropies calculated with respect to two somewhat more re-
convective entropy flux. It agrees with the thermodynamicfined descriptions. To this end a finer partitioning consisting
result (14), where for the multibaker maps we have the ex-of the strips generated by the first iterations of the cells will
plicit expressionc=1—1Inb due to the difference between be taken as the “natural” partitioning. In one case the
phase-space and configuration-space densities appearing (tparse-graineddensities are allowed to take different val-
the respective expressions. In the case of nondriven systerties on the stips of this finer partitioning, and coarse graining
this is the full entropy flux. is carried out after each time step. In the other case the bal-

For a general value o, it is natural to identify the heat ance is established by coarse graining on the full cell after

contribution to the entropy flux with the rest of E§O) as every second time step. Although these cases correspond to
just the simplest possibilities, they clearly indicate the behav-
ior expected for arbitrary refinements.

(61)

02
DM (x t)= — evdyp(X,t) — - €)%p(x,t). (62

A. Preliminaries
In the Hamiltonian cases(=1) this expression reduces to ] . ] ] .
@ (heat— —va,0(x,t), which vanishes for a constant density, We first extend our notations in order to describe densi-
even though there is a finite currang running through the ties, entropies, and fluxes defined on the first level of coarse
system. A physical interpretation of this observation will be 9raining. This requires level-2 par£|t|or!|r(gf. Fig. 2.
given in the DiscussioliSec. IX). It is only in the case of a In every cellm there are k+2)° strips labeled by two

thermostated multibaker mag€ —1) when Eq.(62) goes
over into the physical expression

) .
v vj(x,t)
DA (x 1) =y a,p(X,t —Bp(X,t)E— D

(63

symbols (:),q),wheEp,(qN:NL,l, ... K,R. The strips have
respective heights, ,=s,s,/b, and they carry densities
om(p.q). In the following we callg,(p,q), em(d), and

O the level-2, level-1, and level-O densities, respectively.
By construction, the level-0 densities coincide with the cell
densities considered in the preceding sections. The quantities

for the heat contribution to the flux. It is related to the den-defined on different levels are related to each other by the
sity changes of regions mapped between different cells, andonservation of probability. In our multibaker model these
requires therefore a spatial variation of the Jacobian of theelations read as
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SuSe n ! ,; r
on=2 pen@=2 ~Fen(Pa. (64 Sei=sy I g"e,wp)ln{e;nl(p)f]

~

Owing to the time evolution of the multibaker map there —FIE Sp | , !
are also relations connecting the densities at different time =~ b Om+1(P)IN Qm+1(p)T
instants. Let us use prime and double-prime to denote the
value of a quantity at time and 2r, respectively[Equation s
(64) then holds for primed and double-primed densities, Jtoo. +T(r+1)>, EpQ,'n(p)m[Q(n(p)]- (69)
By taking into account the origin of the points of a given P
region, i.e., the location of their first and second preimage
respectively, we obtain

~

SNotice that the last three terms of E&9) are just the level-
1 generalization of the entropy fluxf. Egs.(38) and(39)].

b2 As a consequence, we find the generalization of (Bg) to

. b b<spsq
Op=—Zen ()= 2 len,, (69 ™
5 @S " S =8P + A Sy (70)
m m e~m -
where the subscript _ ]

This equation states that the net entropy flux through the

m+1, g=L boundary of celim is just the difference between the appro-
priate Gibbs entropie§in our case the level-2 and level-1

mg=1 M q= L...k (66) entropies taken one time step latét is easy to check for the
m—-1, =R present model that this relation still holds when differences

over longer periods of time are considered, and it also ap-

[mg,,=(Mg),] is used as a bookkeeping device to indicateplies to individual rectangles of a refining partition. This
the cell where the points in a given strip come from. shows that the difference of the Gibbs entropies taken at the

To follow the time evolution we again take the initial final time with respect to the finest partition and at the initial
densities to be uniform on the full cell, which implies time taken with respect to the initial partition is ttoaly
emi(p,q)=e., for all (p,q), but now we will allow for other  source of the entropy flux. This is reasonable, even in a gen-
ways of coarse graining. We define the levelatropyS\) of ~ eral context, because this entropy is based on the phase-space
cell m as the Gibbs entropy taken with respect to the lével- densities, which contain the full information about the time

densities. ThusS'=S,,= —~T'@Ingm, evolution of the system.
Based on this observation we can now establish the en-
o tropy balance for the level-1 entropies of cefl. Coarse
SH= -T2 Lo (p)nen(p), (679  graining is applied on the level-1 strips after every applica-
p Db tion of the map. It is convenient to start after one time step

on level-1 strips and follow the process for another time step.
By subtractingS(")" expressed via Eq70) from S we
g obtain

S2=— PE em<pq>lnem<pq> (67b

and

SV gl =AgV=A S +A;8Y, (71)

For later reference we consider now the level-2 entropywvhere
after two time steps, and use E{65—(67) to express it in . v
terms of the densities after one time step, =S - (72

Note thatS(>)" is the value of the level-1 entroggfter two
——FE m(p Q) Iner(p.a) (6838  time steps when coarse graining is applied at every time
step to the level-1 strips. Thus, E2) is the immediate
generalization of Eg41) to entropies that are coarse grained
Y Sq , , bsy D quu)' at the first level of refinement. The irreversible change of
=—l2 Jemin=+2 _'Sn . entropy is again due to the difference between the Gibbs
(68b) entropy and its coarse-grained counterpart. Note that Eq.
(72) holds at any time: in particular it is also valid with one

. prime less on both sides.
B. Entropy balance on level-1 strips

In order to write down the entropy balance on level-1 C. Entropy balance over two time steps

strips we relates?)" to S(7". To this end we use our previ- e are also interested in the entropy balance for the
ous result EQ(45) stating that the dynamics on the internal |evel-0 entropy when coarse graining is applied only after
strips has to be area preservirg=s;, and carry out the every second iteration of the map. In other words, we wish to
summation oveg=L,1, ... k,R to see that establish the balance equation
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E. Evaluation of 6A;S,,
First we note that

SO gO=A@I= ARG L AR (73)

where the superscript? of A® indicates that temporal i~
;:Ihang(ezs) :Ellr)e considered Wlth a time lag of The entropy sV'=-r> Equr,n(Q)mQ/r;(Q)
ux AZS;’ through cellm is the sum of the net fluxes q

during the first and the second time step, yielding
Sq bsq Sq (0)’
:—FE ngqm—N‘f‘E ;qu . (80)
ADSO A SO+ A SY =—50+52". (74 q as; 9
Together with Eq(68b) this implies that
Here, we used the relatio S =S~ SO [insert Egs.

(43) and(45) into Eq.(42)] and Eq.(70) to arrive at the final Asy =sy) -7
equality. Inserting this expression for the two-step flux into S
Eq. (73) we find for the irreversible entropy change :% gq[sg?(:’_sgg’]
APPSR =50 -8 (75 =05 - r[ASY = A S ] 1A SR - A SR 1.

(81
This can also be expressed as
Using Eq.(22) to express andl in terms of the transport

parameters and of the time and length units, we obtain

APSY =S Fasy (7
7D 02
/ , N S J— _ <0 Q0 _9A.g0)
whereA; SO=59"— M)’ [cf. Egs.(41) and(72)], showing OAiSm a2 1+ ZD)[A'Sm1+A' L1288y
that the irreversible change can be expressed as the sum of
two contributions: the first results from comparing the —E[A- 0) A0 ] (82
level-1 entropy with its value obtained for level-0 resolution 2" Ivm+1 Siem-1l

and the second results from comparing the level-2 entropy

with its value obtained for level-1 resolution. SinceA;S\Y is of orderra [after all, A;S{?/ (ar) approaches

a finite limit, the irreversible entropy production per unit

length (volumeé], it is already clear from here th&;S,, is

of order 7%a. To see this in detail notice that in E@®2) the
Equation (72) relates the rate of irreversible entropy expressions in square brackets are discrete versions of spatial

change to the difference between entropies calculated witherivatives. In the limit of large spatial extension therefore

respect to densities of different resolutions. It is natural toye have

compare it with the irreversible chandeS\®) obtained ear-

lier [Eq. (42)] for the same time periotbne uni} by using a

coarse graining over the full cell. We define the difference

S6A;S,, by writing

D. Relations among different expressions

TU2
5A;S= TD( 1+ E) 2089 — 19,08, (83

, For well-posed physical problems we exp&gs\Y/(ar) to
ASY =AS9+5A;S,. (77 approach a function with finite derivativessn This implies
that 5A;S,,,/(ar) possesses a well-defined limit af~0 for
In the same spirit we also have to compare the entropny fixed, butv(airglshes‘og”)r—fo. In other words, the cor-
productionA§2)S§,?), where level-0 coarse graining is done rections to bothr'"™ andP'"™ disappear in the large system
after two time steps, with the value of the same quantity“mit' In this limit different prescriptions using different ways
obtained by doing level-0 coarse graining after each timef coarse graining to calculate the rate of irreversible entropy

step. The latter is the sum of the single-step entropy produ(production give indeed the same results. Similarly, one can
check that also the expressions of the flux possess a well-

tions: defined macroscopic limit. As a consequence, the full en-
, tropy balance equation is independent of the way of coarse
[A;SP]2steP=A; S0+ A SO (78 graining.
For sake of lucidity we only presented the calculations for
In view of Eq. (76) we find the two simplest cases. We stress, however, that the argu-

ment is valid in general. Indeed, all calculations can be gen-
eralized in a straight-forward way to account for averaging
only after everyt time steps on any finite level. All these
approaches only differ in terms that may be expressed as a
i.e., the difference is agaidA;S,,. It is thus sufficient to  product of 7 and spatial derivatives of the macroscopic rate
work out this latter quantity in order to find the difference of irreversible entropy production. For largeand v more
between different approaches. and higher order derivatives appear.

APSO—[A,S0]2 stepsi s\, | (79
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IX. DISCUSSION projected density merely reflects the entropy changes related

In this paper we have illustrated that in dynamical sys-to the gouplmg 0 p'f"”'c'e TESEIVoIrs. -

tems modeling transport the following holds true. To find a proper interpretation for the temw in Jsgy let
(i) A coarse-grained version of the Gibbs entropy is aus consider the balance ef from the point of view of an

natural extension of the concept of thermodynamic entropyobserver moving with velocity, to the right. This corre-
(i) An entropy balance equation can be derived in prop-sponds to the transformatiog(x,t)— ¢ (Xx— uot,t), which

erly or improperly thermostated models, provided the intraimpliesv —v —ug andj—j—uge in the advection-diffusion

cell dynamics is Hamiltonian. equation. In the entropy balance equation the change in the
(iii) The entropy current into the heat bath and into thetime derivative is exactly compensated by the change of the
particle reservoirs can be identified. flux so that the rate of irreversible entropy production re-

(iv) An agreement with nonequilibrium thermodynamics mainsinvariant For the special choice afy=v the case of
can be found only for the properly thermostaieéd., dissi- a pure diffusion is recovered. Then, and only then, the pro-
pative with time reversal symmejrynodel (= —1) in its  jected density gives rise to an entropy production corre-
macroscopic limit. sponding to Gaspard's resyi5], i.e., o™ =g,,.

(v) The details of the phase-space densities can be fol- In view of these observations we can say that the Hamil-
lowed with enhanced resolution, but upon reaching the finesonian version é=1) of our multibaker model corresponds
level of observation always the same amount of entropy iso a purely diffusive problem observed from the reference
produced in the large system limit. _ frame moving to the left with velocity. The presence of a

(vi) There is reason to believe that the formd™  termup in the total current in this system is then due to a
=u?/D for the rate of irreversible specific entropy produc- Galilei transformation and must not be identified with a cur-
tion in the large system limit is valid beyond linear thermo- rent generated by an external field.
dynamics, since the derivation of entropy production relies We expect our results to be generic for generalized
upon dynamical concepts. Anosov systems. Although our model is piecewise linear, the

(vii) The entropy-balance equation cannot be derivedjeneral features are valid in a much broader class of systems
from the projected dynamics onto the direction of transporsince smooth dynamical systems appear on sufficigbily
alone if any kind of thermostatingissipation is present. not infinitesimally small scales to be piecewise lind&9].

In order to have a better understanding of the last stateFhus we expect more general transport models to be well-
ment, it is worth mentioning that a “projected” entrof,  approximated on small scales via multibaker maps that might
different from S(® can be defined with respect to the masshave many more strips and colum¢mut of finite number
density p(x,t) [i.e., the phase-space density projected ontdhan ours, in different geometrical arrangements. At this
the direction of transpot point our work complements the chaoticity hypothesis of

Gallavotti and Cohef6,24,27. In order to derive thermody-

namic behavior, they assume hyperbolicity, and that the av-
Sp()=- J p(x,DInp(x,t)dx. (84  erage phase-space contraction of the system is just the rate of

irreversible entropy production. The requirement of hyperbo-

This entropy contains information about the inhomogeneitiedicity was stated as an extension of the ergodicity hypothesis
of the distribution along thex axis. The dynamics of the in order to cover also nonequilibrium phenomena. Together
density s,(x,t) = —p(x,t)Inp(xt) of this entropy immedi- with time re\(er3|_b|llty, it might very well be a sufficiently

ately follows from the advection-diffusion equatigs). A ~ good approximation to construct models for transport. How-

direct substitution shows that an entropy balance equatiofver, the requirement about the equivalence of average
exists in the form phase-space contraction and the rate of irreversible entropy

production was up to now based on plausible physical argu-

HSp=—dxis + T (85) ments[2,7,20 without introducing the concept of entropy

P and its balance equation. Here, we were able to demonstrate
that this property can be derived for periodic driven thermo-
stated systems with the use of coarse-grained entropies. As
we also pointed out, this relation is a special case of a more
general relation: in the presence of particle reservoirs giving
rise to diffusion currents, there are additional contributions to
the entropy production from the mixing of phase-space re-
gions with different(coarse-graineddensities. In the case of
(87) pure diffusion when no dissipation is needed, this effect is
p(X,t) responsible for the entire entropy product{@], but in the

simultaneous presence of both diffusion and drivithgermo-

as the entropy production of,. This rate of irreversible stating an interplay of both effects can be observed.
entropy production is always positive. However, in the case
of a nonvanishing drift it is markedly different from the ther-
modynamic for_mguz/D. This is_in agreement with our pre- _ ACKNOWLEDGMENTS
vious observation that the projected density cannot contain
information about the phase-space contraction alongythe  This work was started during a workshop at the ESI in
axis giving rise to the heat current into a thermostat. TheVienna. We are grateful for enlightening discussions with

with
jsp(x,t)= —j(x,)[1+Inp(x,t)]+vp(Xx,t) (86)
as the entropy current, and

~[ap(x,0]?
O'p— N
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