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Entropy balance in the presence of drift and diffusion currents:
An elementary chaotic map approach
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We study the rate of irreversible entropy production and the entropy flux generated by low-dimensional
dynamical systems modeling transport processes induced by the simultaneous presence of an external field and
a density gradient. The key ingredient for understanding entropy balance is the coarse graining of the phase-
space density. This mimics the fact that ever refining phase-space structures caused by chaotic dynamics can
only be detected by finite resolution. Calculations are carried out for a generalized multibaker map. For the
time-reversible dissipative~thermostated! version of the model, results of nonequilibrium thermodynamics are
recovered in the large system limit. Independent of the choice of boundary conditions, we obtain the rate of
irreversible entropy production per particle asu2/D, whereu is the streaming velocity~current per density! and
D is the diffusion coefficient.@S1063-651X~98!09407-0#

PACS number~s!: 05.45.1b, 05.20.2y, 05.70.Ln, 51.10.1y
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I. INTRODUCTION

Transport models based on dynamical systems with on
few degrees of freedomhave become a subject of intensiv
recent studies@1–19#. They illustrate how macroscopi
transport coefficients are related to the properties of the
croscopic dynamics. It is a remarkable discovery that in c
otic dynamical systems a rate of irreversible entropy prod
tion can be defined@2,4,5,7,20–30#, which is, in the large
system limit, consistent with the results of nonequilibriu
thermodynamics. However, the choice of the entropy
which the above statement holds has long been controver
Recently, a coarse-grained entropy has been proposed@21–
23,25,26,29# ~for a review on general considerations, c
@30#!. The first attempt to derive a complete entropy balan
equation for such an entropy is due to Gaspard@25# for a
map modeling pure diffusion. In the most general setti
however, two types of currents are present: a drift curr
induced by an external field, and a diffusion current due t
density gradient. The aim of the present paper is to show
~i! an entropy defined with respect to coarse-grained ph
space densities is the appropriate analog of the therm
namic entropy also in this case, and~ii ! the microscopic dy-
namics has to have areversible@31# dissipation mechanism
in order to have a macroscopic limit consistent with therm
dynamics. The deviation from phase-space conserva
should model the effect of a thermostat@2,1,7#.

It is essential for the definition of a thermodynamica
relevant entropy that it is independent of time in a mac
scopically stationary state. A coarse-grained entropy fulfi
this requirement. This choice is physically motivated by t
finite resolution of any observation. The use of coar
grained entropies also avoids the well-known object
against the validity of statistical averages due to Poinc´
recurrences because for strongly chaotic systems recurre
can only occur for initial distributions with arbitrarily fine
PRE 581063-651X/98/58~2!/1672~13!/$15.00
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phase-space structure. Such initial conditions cannot be r
ized in a coarse-grained approach.

In order to be able to carry out explicit calculations, w
consider a multibaker map introduced recently@29#. It con-
sists of a chain ofN rectangular cells of sizeG5a3b such
that the phase space is a rectangle of sizeNa3b in the (x,y)
plane. The average phase-space density,%m , in cell m(1
<m<N) is called thecell density, and the sumG(m51

N %m
amounts to the total number of particles in the system@32#.
Coarse graining is carried out inevery cellafter each time
step. The central object of our investigation is thecoarse-
grained entropy Sm of cell m defined by using the cell den
sity %m as

Sm52G%mln%m . ~1!

We claim that the proper thermodynamic entropy of a la
system consisting ofN@1 cells is

S5 (
m51

N

Sm . ~2!

In these equations the Boltzmann constantkB has been sup-
pressed for convenience. The expressions we obtain
quantities having a well-defined large system limit are me
ingful since they turn out to be independent of the particu
choice of the coarse graining~cf. Sec. VIII!.

A change ofSm can only be due to a temporal variation
the cell density. This entropy change can be decompo
into an entropy fluxthrough the boundaries of cellm and
another contribution, which will be called theirreversible
entropy production. Even when the system is in a stead
state there can be an entropy flux flowing through the bou
aries. This contribution to the change of entropy must th
be counterbalanced by the irreversible entropy product
The latter is caused by averaging over the inhomogene
generated by the dynamics in the phase-space den
%m(x,y) of cell m. The two contributions to the full entropy
change will be computed based on theGibbs entropy
1672 © 1998 The American Physical Society



ti
a
io
e
p

be
te
-
or
t

o-
ng
as
on
th
-

rs
dy
m

e

r

a
te
e

e
te

es

-

op

ic
it
d
c

en
es

ui-
es
be

a
y-
n.

e
-

m-
en-
w
to
oice

in
se

of
are

em
id-

m-
e of
ex-
is
by
.

-

t

the
the

b-
o-

e

PRE 58 1673ENTROPY BALANCE IN THE PRESENCE OF DRIFT . . .
Sm
~G!52E

cell m
%m~x,y!ln%m~x,y!dxdy ~3!

of cell m.
For a steady state this entropy eventually has a nega

time derivative in a dynamical system, which has been
gued to be related to the irreversible entropy product
@2,4,20,29#. The Gibbs entropy, however, does not fulfill th
thermodynamic requirements for a well-defined entro
since, in nonequilibrium systems, it is not bounded from
low. In a steady state of an externally driven thermosta
system@2# or in open systems@21,25# it decreases at a con
stant rate. This is due to the presence of an attractor
saddle in the phase space. A proper modeling of transpor
means of dynamical systems requires, in our view, themix-
ing property@33# of the dynamics. Since this implies cha
ticity, the above mentioned attractor or saddle is a stra
invariant set and generates fractal structures in the ph
space density on ever-refining scales during time evoluti

Our goal will be to compare the difference between
Gibbs entropy, Sm

(G) , and the thermodynamically well
behaved coarse-grained entropy,Sm , for the multibaker map.
This allows us to identify the entropy flux and the irreve
ible entropy production of arbitrary steady and non-stea
states. To make contact with nonequilibrium thermodyna
ics, we consider the macroscopic limit where the cell siza
is much smaller than the linear sizeL5Na of the system
(N@1) and the time unitt of the dynamics is much shorte
than that of the macroscopic relaxations. In this limit botha
andt tend to zero,

a→0, t→0, ~4!

while the transport parameters are kept finite. The results
expected to be independent of the order of the limits. La
calculations will often be performed in two steps; first, w
carry out the limitt→0, and subsequentlya→0. This is
convenient for technical reasons, and is appealing sinc
the limit t→0 the transport process is described by a Mas
equation~see@34# for a general discussion of these limits!.

In the double limit ~4! the transport process becom
compatible with an advection-diffusion~Fokker-Planck!
equation@17# describing the time evolution of the distribu
tion of mass densityr(x) along thex axis @i.e., of the pro-
jection of the phase-space density% on the direction of trans-
port# as

] tr~x,t !52v]xr~x,t !1D]x
2r~x,t ![2]xj ~x,t !. ~5!

Herev, the drift coefficient~bias!, andD, the diffusion co-
efficient, are the two parameters characterizing macrosc
transport, and

j ~x,t !5vr~x,t !2D]xr~x,t ! ~6!

denotes the current density. The mass and charge of part
are set to unity so that mass, number, and charge dens
are the same throughout this paper. Note, however, the
ferent symbolsr and % used for the mass and phase-spa
densities, respectively.

The expressions we shall obtain for the irreversible
tropy production and for the entropy fluxes into external r
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ervoirs go over into expressions well known from noneq
librium thermodynamics. The model we present provid
thus a low-dimensional example from which laws can
derived @29# that are commonly believed@35# to be conse-
quences of large phase-space dimensions.

The paper is organized as follows. In Sec. II we give
brief summary of the classical nonequilibrium thermod
namics treatment of transport due to both drift and diffusio
Then the multibaker map is defined~Sec. III!, and the dy-
namics of the cell densities~Sec. IV! and the entropy balanc
equation~Sec. V! are derived. The rate of irreversible en
tropy production is computed in Sec. VI with a special e
phasis on the macroscopic limit. The expressions for the
tropy flux are discussed in Sec. VII. In particular, we sho
how it can be split into flows into particle reservoirs and in
a heat bath. The independence of the results from the ch
of the partition used for coarse graining is demonstrated
Sec. VIII. Finally, the physical picture emerging from the
findings is discussed in the concluding Sec. IX.

II. NONEQUILIBRIUM THERMODYNAMICS

In this section we recall the thermodynamic description
transport in the case when drift and diffusion currents
simultaneously present@35#. The temperatureT of the sys-
tem will be kept spatially constant throughout the syst
~i.e., systems with temperature gradients will not be cons
ered!, and we use the laws of nonequilibrium thermodyna
ics and linear response. We stress, however, that in spit
these assumptions for the derivation, the macroscopic
pressions can very well be of more general validity. This
indeed the case for some of them, as will become clear
comparison with the results found for the multibaker map

A. Mass conservation

The conductivitys is the transport coefficient that quan
tifies the amount of a current densityj in response to an
applied thermodynamic forceX. In the presence of a gradien
of the chemical potential (m) and an external force (E) this
leads to@35#

j 5sTX5s~E2]xm!. ~7!

In the present paper we restrict ourselves to cases where
external field and the density gradient are both parallel to
x axes so thats is a scalar.

Next, we rewrite the current in a convenient form. Su
stituting the thermodynamic expression for the diffusion c
efficient

D5s
]m

]r U
T

~8!

into Eq. ~7! we find that j 5sE2D]xr. Consequently, the
total currentj is the sum of thediffusion current2D]xr and
the drift current sE. By introducing the drift velocity

v[m0E[sE/r, ~9!

wherem0 is the mobility of the particles, we find that th
streaming velocity
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u[
j

r
~10!

takes the form

u5v2D
]xr

r
. ~11!

This expresses a competition between drift and diffusion
equilibrium we have a stationary state withu50. In that case
the field exactly compensates the density gradient, and a
file of the mass density sets in that corresponds to the b
metric formula.

With these substitutions the conservation of partic
leads to a continuity equation] tr52]xj , which for one-
dimensional transport corresponds to the advection-diffus
~Fokker-Planck! equation~5!.

B. Entropy balance

In every fixed volumeV a global entropy balance equa
tion

dS

dt
5

deS

dt
1

diS

dt
~12!

holds@35#, expressing that the total change of the thermo
namic entropyS is the sum of a flow of entropydeS/dt
across the borders into the volume, and the rate of irrev
ible entropy productiondiS/dt>0. In a nonequilibrium
steady statedS/dt50, and the flow balances the irreversib
entropy production.

The entropy balance per unit volume is obtained by div
ing Eq. ~12! by V,

d

dtS S

VD5F1s~ irr!, ~13!

whereF denotes the entropy flux entering the system, a
s (irr) the rate of irreversible entropy production per unit vo
ume. ~The latter will always be denoted bys (irr) to avoid
confusion in the notation with the conductivitys.!

C. Entropy flux

The entropy flux can be split@35# into a convective con-
tribution

F~conv!5]x@ j ~c1 lnr!#, ~14!

wherec is a constant, characterizing the entropy carried
the flow of particles, and a termF (heat) accounting for a hea
flux. For a system at a constant temperatureT, subjected to
an external field, the latter contribution to the entropy flo
corresponds to the heat flow, which dissipates the work d
by the external field into a thermostat~Joule’s heat!. We
write this entropy flux as

F~heat!52
E j

T
52

v
D

j , ~15!

where we used the definition of the drift~9! and Einstein’s
relationrD5sT to arrive at the last equality.
n
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D. Irreversible entropy production

In the regime of linear response, the rate of irreversi
entropy productions (irr) is the product of the current densit
j and the thermodynamic driving forceX @35#,

s~ irr!5 jX. ~16!

In view of Eq. ~7!, this leads to

s~ irr!5
j 2

sT
5

j 2

rD
, ~17!

where, again, we have used Einstein’s relation.
We shall also be interested in the rate of entropy prod

tion P(irr) per particle. This can be written as

P~ irr!5
s~ irr!

r
5

u2

D
. ~18!

Besides the diffusion coefficient, it only depends on t
streaming velocityu @Eq. ~11!#. Expression~18! does not
contain the temperature. Therefore, this form is particula
suited for the use in dynamical systems.P(irr) has been ar-
gued@29# to be well-defined also for large systems with a
sorbing boundaries~where no steady states exist!, and is thus
a good quantity for the comparison of irreversible entro
production in systems subjected to different boundary con
tions.

III. THE MULTIBAKER MAP

Baker maps are known to be prototypes of strongly c
otic systems@33#. Multibaker maps are a generalization ta
lored to model transport processes@14,15,17,29#.

The system consists of a chain of identical cells@Fig.
1~a!#. The action of the map on a cellm (0,m,N11) is
pictorially defined in Fig. 1~b!. Every time the square is di
vided into k12 vertical columns. The rightmost~leftmost!
column of widthsR(sL) is mapped onto a strip of widtha
and heightsR̃ (sL̃) in the square to the right~left!. These
columns are responsible for transport in one time stept. The
middle columns of widths1 , . . . ,sk stay inside the same
cell. They are transformed into strips of widtha and respec-
tive heights1̃, . . . ,sk̃, and model the chaotic motionnot con-
tributing to transport during a single iteration. We will on
consider maps with global phase-space conservation, w
requires

(
i 51

k

si1sL1sR5a, ~19a!

(
i 51

k

sĩ1sL̃1sR̃5b. ~19b!

The local phase-space contraction rates are

s i52
1

t
ln

asĩ

bsi
, i 51, . . . ,k, ~20a!
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sL52
1

t
ln

asL̃

bsL
, ~20b!

sR52
1

t
ln

asR̃

bsR
. ~20c!

The multibaker map possesses a phase-space de
%m(x,y) that can be assumed to take, in each cell, cons
values along thex direction. For such a distribution, a poin
(x,y) of cell m is mapped, in one step of iteration, to ce
m21 or m11 with the respective transition probabilitiesr
5sR /a andl 5sL /a. The differencer 2 l between these tran
sition probabilities gives rise to a drift current, while a d
fusion current can be induced by density differences am
cells.

The cell-to-cell dynamics of the model is equivalent to
random walk with fixed step lengtha and transition prob-
abilities r and l . Such random walks are characterized
well-defined drift and diffusion coefficients (v and D),
which can be expressed in terms ofr and l as @36#

r 2 l 5
t

a
v, ~21a!

r 1 l 5
2t

a2
D1

t2

a2
v2, ~21b!

or

FIG. 1. Graphical illustration of the action of the multibak
map with two internal strips (k52). ~a! The mapping is defined on
a domain ofN identical rectangular cells of sizea3b, with bound-
ary condition imposed on the density of two additional cells 0 a
N11. ~b! Action of the map on any of the cellsm51, . . . ,N. Four
columns are squeezed and stretched to obtain vertical strip
width a. The two columns of widthss1 ands2 are transformed to

strips of heightss1̃ ands2̃, respectively, which stay inside the sam
cell; the other two columns of widthsR andsL are transformed to

strips of heightssR̃ andsL̃ and leave the square to the right and t
left, respectively. Note the corresponding free spaces to which
umns from the neighboring boxes are mapped. We only cons

maps wheresL̃1s1̃1s2̃1sR̃5b so that phase-space volume is pr
served globally~locally, however, contraction or expansion will oc
cur!.
sity
nt

g

r 5
tD

a2 S 11
av
2D

1
tv2

2D D , ~22a!

l 5
tD

a2 S 12
av
2D

1
tv2

2D D . ~22b!

These general relations connect the transition probabilitier
and l of the microscopic dynamics with the macroscop
transport parametersv and D. However, they do not ye
imply the existence of a macroscopic transport equation.
only in the macroscopic limit~4! where the dynamics of the
random walk model is governed by such an equation, nam
by the Fokker-Planck equation~5!.

To carry out the macroscopic limit it is convenient

express the heightssR̃[br̃ andsL̃[b l̃ in a way analogous to
Eq. ~22! by introducing the parametersJ ande,

r̃ 5J
tD

a2 S 11e
av
2D

1
tv2

2D D , ~23a!

l̃ 5J
tD

a2 S 12e
av
2D

1
tv2

2D D . ~23b!

Here,J[( r̃ 1 l̃ )/(r 1 l ) is the average Jacobian on the uni
of strip R andL. In view of Eq.~19b!, JÞ1 implies that the
dynamics cannot be phase-space preserving on the i
strips i 51, . . . ,k. The parameter

e[
1

J

r̃ 2 l̃

r 2 l
~24!

measures the deviation from uniform phase-space cont
tion on the stripsR andL. For e51 the Jacobians of thes
strips are identical, fore521 they are reciprocals of on
another.

Depending on the choice of the contraction rates, differ
transport dynamics can be modeled as follows.

~i! Phase-space preserving~Hamiltonian! dynamics:

sL5sR5s i50, i 51, . . . ,k ~25a!

(J51, r̃ 5r , l̃ 5 l ,e51).
~ii ! Dissipative dynamics with time reversal symmetry:

sR52sL5
1

t
ln

r

l
, s i50, i 51, . . . ,k ~25b!

(J51, r̃ 5 l , l̃ 5r ,e521). This choice mimics the effect o
a thermostat@29#. Indeed, a map modeling driven therm
stated systems has to be area-contracting~expanding! if the
trajectory moves in the direction of~against! the bias in order
to model slowing down~acceleration! of particles moving
parallel ~antiparallel! to the external field~cf. @2,1,7#!, while
it has to preserve the volume of phase-space elements
displaced with respect to the field. Consequently, we req
s i50 for i 51, . . . ,k. Furthermore, the local contractio
ratessR andsL for making a step to the right or to the lef
respectively, should add up to zero,sR1sL50, so that the
overall dissipation vanishes for a closed trajectory. It
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worth noting that the map is then reversible in the sense
Ref. @37#, i.e., the time reversed dynamics is identical to t
direct one up to a geometrical transformation~in our case it
is a reflection at the diagonal of every cell!. This is consistent
with the behavior of thermostats constructed for continu
time systems@2#.

~iii ! Phase-space preserving dynamics on the inner s
only:

sL5” 2sR5” 0, s i50, i 51, . . . ,k ~25c!

(J51,eÞ61). This case has similarities with the therm
stating algorithm but does not fulfill time reversibility. W
consider it as a model of improper thermostating.

IV. MASS CONSERVATION

In this section, the time evolution of the coarse-grain
densities is discussed. We consider a single cellm of the
multibaker map with cell density%m . Moreover, the mass
density per unit length of the cell corresponds toG%m /a, i.e.,
to the number of particles in cellm divided by its width.
Note thatrm differs only by a factorb from the cell density:
b%m5rm . In general, the cell density%m8 after a single time
step will differ from%m due to the outflow to and the inflow
from the neighboring cells. The conservation of probabil
requires

%m8 5S (
i 51

k
si

a D%m1r%m211 l%m11 . ~26!

This is the basic dynamical equation for the cell density. I
stationary state%m8 5%m . Note that the parentheses equa
12(r 1 l ) because of Eq.~19a!, and the dynamics is com
pletely determined by the transition probabilitiesr and l .

The system will be subjected to flux boundary conditio
that model the contact with two particle reservoirs at
ends:

%0[%L , %N11[%R , ~27!

where the two densities%R>%L are kept constant. Thes
boundary conditions are convenient since for%R5” %L they
allow nonzero density gradients and related diffusion c
rents in the system, even in steady states. As far as
coarse-grained densities are considered, the special ca
%R5%L5” 0 is equivalent to periodic boundary conditions.
that case the steady state is characterized by cell dens
that do not depend on the spatial position~i.e., the indexm).
In such steady states there is only a drift current.

In a general non-steady-state one has to distinguish
currents

j m
25

a

t
~rrm212 lrm! ~28a!

and

j m
15

a

t
~rrm2 lrm11! ~28b!
of

s

ps

d
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e

r-
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through the left and right boundaries of cellm, respectively.
Note that the currents are defined with respect to the m
density, and, by definition,j m

25 j m21
1 . Taking into account

Eq. ~19a!, one can express the evolution equation of the d
sity ~26! as

rm8 2rm

t
52

j m
12 j m

2

a
, ~29!

which is a discrete continuity equation. It goes over into t
advection-diffusion equation~5! in the macroscopic limit~4!,
when b%m5rm→r(x5ma) and j m

6→ j (x5ma). Equation
~29! can be rewritten in the form

%m8

%m
5

rm8

rm
512t

j m
12 j m

2

arm
[12tgm . ~30!

Here,gm is a local decay rate characterizing the relaxation
a cell density towards its stationary value. It vanishes in a
stationary state. Note that the ratio of two cell densities is
same as the ratio of the corresponding mass densities.

The average local streaming velocity is defined as

ūm5
j m

11 j m
2

2rm
. ~31!

With these definitions the ratios between densities of nei
boring cells can be expressed as

%m21

%m
5

rm21

rm
5

l

r S 11
t

la
ūm2

t

2l
gmD , ~32a!

%m11

%m
5

rm11

rm
5

r

l S 12
t

ra
ūm2

t

2r
gmD . ~32b!

The above relations can be considerably simplified in
steady state, where the cell densities are independent of
%m8 5%m . Then the current density

j 5
a

t
~rrm212 lrm!5

a

t
~rrm2 lrm11![um%m ~33!

is homogeneous in space. Note, however, that the stream
velocity ūm5um can still depend onm because of a spatia
dependence ofrm .

For the coarse-grained invariant density~the cell as well
as the mass density! of a steady state with flux boundar
conditions we obtain a geometrical progression along
chain:

rm5rL2c1cS r

l D
m

, ~34!

where

c5
rR2rL

~r / l !N1121
. ~35!

This general result contains two well-known limiting case
In the equilibrium state without current it reduces to a d
cretized versionrm5rL(r / l )m of the barometric formula.
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For a steady state without drift~i.e., in the limit r→ l ) one
recovers Fick’s law — a linear density profile.

V. ENTROPY BALANCE

The entropy balance equation is the analog of Eq.~26! for
the entropy2G%mln%m. In this section we assume tha
coarse graining takes place instantaneously after each i
tion. Thus, every iteration of the map starts with a homo
neous phase-space density in each cell. The change ofSm in
one time step can have several reasons.

~i! A temporal change of the cell density%m into %m8 leads
to a new coarse-grained entropy

Sm8 52G%m8 ln%m8 . ~36!

The difference

DSm[Sm8 2Sm ~37!

is the temporal change of the coarse-grained entropy. It
be used as a proper generalization of the full time deriva
of the entropy appearing on the left-hand side of Eq.~12!.

~ii ! Part of the temporal change of the coarse-grained
tropy is due to an entropy flux through the boundaries of
cell. Indeed the columns in cellm are mapped partially onto
strips in the neighboring cells@cf. Fig. 1~b!#, leading to an
entropy flux DSout. Correspondingly, regions from th
neighboring cells are mapped into cellm, giving rise to a
flux DSin . The entropy flowing out of cellm is related to the
densities of the columnsL and R beforethe action of the
mapping:

DSout52G~%mr ln%m1%ml ln%m!. ~38a!

We define the entropy inflow as the entropy content of
strips R and L coming from cellsm21 andm11, respec-
tively, i.e., this contribution of the entropy flux is evaluate
after application of the mapping@38#. The strips have respec
tive width sR̃ and sL̃, and carry the densities%m21r / r̃ and
%m11l / l̃ . This leads to

DSin52GF%m21r lnS %m21

r

r̃
D 1%m11l lnS %m11

l

l̃
D G .

~38b!

In a time step the net entropy flow into the cell through t
boundaries is thus

DeSm5DSin2DSout. ~39!

Note that a part of this entropy flow is due to an exchange
particles between neighboring cells. Another part of it d
scribes the entropy flowing into or out of the thermostat
which the cells are coupled. In particular, the factorsr / r̃ and
l / l̃ in Eq. ~38b! arise from such contributions~for further
discussions see Sec. VII!.

~iii ! In addition to the flux, there is a change of entropy
a cell due to coarse graining. In order to see how this can
taken into account, let us first work out the change in
Gibbs entropy. With a uniform initial density, the entrop

Sm
(G)8 inside cellm after one time step differs from the initia
ra-
-

an
e

n-
e

e

f
-

e
e

entropy because different strips inside cellm carry densities
different from the initial%m , namely%m21r / r̃ on strip R,
%m11l / l̃ on stripL, and%msi /sĩ on stripsi 51, . . . ,k. Thus,
we obtain

Sm
~G!852GH %m(

i
Fsi

a
lnS %m

bsi

asĩ
D G1%m21r lnS %m21

r

r̃
D

1%m11l lnS %m11

l

l̃
D J . ~40!

This expression is markedly different fromSm8 , and the dif-
ference

D iSm[Sm8 2Sm
~G!8 ~41!

is related to the irreversible entropy production as will
discussed below.

To find a balance equation for the entropy, we notice t
by means of Eqs.~39!, ~40!, and ~1! the entropies

Sm
(G)8, DeSm , andSm are related to each other as

Sm
~G!82DeSm5Sm2G%mtx, ~42!

where

x52
1

t(i

si

a
lnS asĩ

bsi
D ~43!

denotes the average phase-space contraction rate on the
i 51, . . . ,k. Subtracting Eq.~42! from Sm8 we find

DSm5DeSm1D iSm2G%mtx. ~44!

Dividing this equation byt, we see that it is of the sam
structure as Eq.~12! provided thatx50. Thus, we can find
an analogy with the thermodynamic entropy balance onl
the internal dynamics is phase-space preserving~Hamil-
tonian!, i.e., if

asĩ5bsi . ~45!

In the following we therefore focus on systems where t
condition holds. In combination with Eq.~19! this implies
that the average Jacobian on the union of stripsR andL has
to be unity:J51. In physical terms, condition~45! ensures
that the internal dynamics of a cell does not contribute
entropy changes. The mixing of phase-space densities
tween neighboring cells, i.e., thetransport processis respon-
sible for all changes in entropy.

With condition ~45! we find that

D iSm

t
>0 ~46!

is the dynamical-system analog of irreversible entropy p
duction. Its positivity is due to the fact that the Gibbs entro
contains in general more information on the phase-sp
structures than the coarse-grained entropy.
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In particular, in a steady state and with homogeneous

tial density, for whichSm8 5Sm5Sm
(G)5” Sm

(G)8, the irreversible
entropy production

D iSm

t
5

Sm
~G!2Sm

~G!8

t
52

DSm
~G!

t
~47!

coincides with thenegativetime derivative of the Gibbs en
tropy. This is in agreement with a recent result for gene
dynamical systems@21#, and with the observations based o
thermostated molecular-dynamics simulations@1,2#. The use
of the coarse-grained entropy provides a natural framew
to derive this result.
i-

l

rk

Finally, we note that the particular expressions used
the value of the entropy and its temporal change still dep
on our choice of the coarse graining unit as a cell. T
dependence seems to be much weaker for the temp
changes than for the entropy itself. In particular, we show
Sec. VIII that in the macroscopic limit~4! the flux and the
irreversible entropy production go over into forms indepe
dent of the type of coarse graining.

VI. IRREVERSIBLE ENTROPY PRODUCTION

Substituting Eqs.~26! and ~40! into the expression~41!
for D iSm and using Eqs.~45! and~19a! again, we obtain for
the rate of specific irreversible entropy production in cellm,
it
t

ide

e
limit
Pm
~ irr!5

D iSm

tG%m
5

1

t F%m21

%m
r ln

r%m21

r̃%m

1
%m11

%m
l ln

l%m11

l̃ %m

2
%m8

%m
ln

%m8

%m
G . ~48!

In this section, we evaluatePm
(irr) in the general setting of the multibaker, and discuss the macroscopic limit~4! for fixed

transport parametersv andD.

First, we use Eqs.~22! and~23! to express the microscopic parametersr , l , r̃ , l̃ in terms of the discrete unitst anda of
time and lengths, respectively, and ofv andD. By taking into account also relations~30! and ~32a! for the density ratios in
terms of the average streaming velocity and the local decay rate, we obtain

Pm
~ irr!5

D

a2H F11
a

2DS 2ūm2v2agm1
tv2

a D G lnF 11
a

2DS 2ūm2v2agm1
tv2

a D
11e

va

2D
1

tv2

2D

G
1F12

a

2DS 2ūm2v1agm2
tv2

a D G lnF 12
a

2DS 2ūm2v1agm2
tv2

a D
12e

va

2D
1

tv2

2D

G J 2
1

t
@12gmt# ln@12gmt#. ~49!

Note that this expression is an even function of the microscopic length scalea so that the corrections to the macroscopic lim
a,t→0 can only contain even powers ofa ~the reason is thatūm andv are odd functions ofa). Moreover, by a rearrangemen
of the logarithms one can show that the terms in braces are at least of ordera2, i.e., even the lowest order corrections int scale
like ta2. Consequently, the macroscopic limit does not depend on the order of the limitsa→0 andt→0. We first carry out
the limit t→0. All terms containing positive powers oft can be neglected in this limit. In the last term on the right-hand s
of the equation onlygm survives. Moreover, in the braces the local relaxation rategm only appears as a product witha2/D, i.e.,
with the microscopic time scale governing the diffusion process. The latter is small on the macroscopic scale:gma2/D!1.
Therefore, it is sufficient to evaluatePm

(irr) in leading order ingm , which yields

Pm
~ irr!5

2ūm2v
2a

lnF S 11
a

2D
~2ūm2v !

12
a

2D
~2ūm2v !

D S 12e
va

2D

11e
va

2D

D G1
D

a2
lnF 12S a

2D
~2ūm2v ! D 2

12S eva

2D D 2 G
2

gm

2
lnF 12S a

2D
~2ūm2v ! D 2

12S eav
2D D 2 G . ~50!

Here, we have dropped terms that are of ordergm
2 a2/D at least. Besides the cell sizea, this expression depends on th

macroscopic length scalesl v[D/v and l m[D/um characterizing the bias and the streaming. In the large system
l v ,l m@a, we obtain, by expandingPm

(irr) in powers of the small dimensionless parametersa/ l v anda/ l m ,
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Pm
~ irr!5

S ūm2
11e

2
v D 2

D H 11
a2

6D2F S ūm2
12e

2
v D 2

1
e2v2

2 G J 1gm

a2

2D2F S ūm2
v
2D 2

2
e2v2

4 G1higher-order terms. ~51!
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Taking the macroscopic limit~4! we see that a cell size in
dependent limit

Pm5x/a
~ irr! 5

1

D Fu~x,t !2
11e

2
vG2

5
1

D Fv
12e

2
2D

1

%~x,t !
]x%~x,t !G2

~52!

exists.
Note that the relaxation rategm only appears in the cor

rections to expression~52!. This implies that in the macro
scopic limit @when gm→2] tln%(x,t)# we find identical ex-
pressions for the entropy production in steady and n
steady-states. The only difference between these states
implication of nonstationarity on theglobal profile of the
streaming velocity. Far away from the steady state, howe
the term proportional togm can be the most importantcor-
rection to the thermodynamic entropy production.

In the remainder of this section we discuss different s
cial cases of the expression Eq.~51! which also allow us to
illustrate the physical content of the equation, and to m
contact with previous results.

First, we consider the thermostated casee521. For this
choice the leading contribution toPm

(irr) coincides with the
thermodynamic result~18!. It is augmented by a finite siz
correction that is positive in a steady state, and vanishes
in the equilibrium stateum50. Note that Eq.~18! can only
be recovered for this particular choice ofe. Only proper
thermostating can therefore yield results consistent with n
equilibrium thermodynamics.

Another case of interest ise51. In this case we find in
leading orderPm

(irr)5D(]x%/%)2 @cf. Eq. ~52!#, i.e., only the
diffusion current contributes to the entropy production. T
implies that transport in driven systems,v5” 0, cannot ad-
equately be described in the framework of purely Ham
tonian systems~for more details see the Discussion!. For e
arbitrary andv50, on the other hand, Eq.~51! coincides
with the expression derived by Gaspard@25# for the unbiased
case, including the leading order finite size correction.

Values ofe different from 61 ~improper thermostating!
do not have immediate relevance to classical thermodyn
ics. They represent nevertheless interesting cases in w
the current-free steady stateum50 can be accompanied by
nonvanishing irreversible entropy production.

There is a special value of the currentj 5%mv(11e)/2,
where the irreversible entropy production vanishes in
steady state even though the current might be nonvanish
This condition onj corresponds toum[v(11e)/2, irrespec-
tive of m. Since the current is constant in a steady state,
density must not depend onm, either. As a consequence
there is just one nontrivial stationary state,%m5const for all
m, um5v, and e51, which does not give rise to entrop
-
the

r,

-

e

ly

n-

s

-

-
ich

a
g.

e

production even though there is a nonvanishing current. T
situation corresponds to a biased Hamiltonian dynamics w
a constant average density in the cells.

VII. ENTROPY FLUX

The entropy flow@Eqs.~39! and~38!# through the bound-
aries of cellm,

DeSm5GF ~r 1 l !%mln%m2r%m21lnS %m21

r

r̃
D

2 l%m11lnS %m11

l

l̃
D G , ~53!

can be split into two contributions, one depending on
transition probabilitiesr , l ~and on the densities! only, and
another one containing the effect of local phase-space c
tractions. Correspondingly, the flux can be written as

Fm[
DeSm

ta
5Fm

~1!1Fm
~2! ~54!

with

Fm
~1!5

j m
1

a
ln%m112

j m
2

a
ln%m211

rm

t S l ln
%m

%m21
1r ln

%m

%m11
D ,

~55a!

Fm
~2!52

rm

t S %m21

%m
r ln

r

r̃
1

%m11

%m
l ln

l

l̃
D , ~55b!

where we used the definition~28! of the currents through the
respective boundaries of a cell.

We evaluate the macroscopic limit of both contributio
to the entropy flux separately. Substituting Eq.~22! and tak-
ing t→0, the former expression can be rewritten as

Fm
~1!5

j m
12 j m

2

a
~11 ln%m!1

j m
1

a
ln

rm11

rm
1

j m
2

a
ln

rm

rm21

1
D

a2Frmln
rm

2

rm11rm21
1~rm111rm2122rm!G

2
v

2aFrmln
rm11

rm21
1~rm112rm21!G . ~56!

In the large system limita→0, when j m
6→ j (x5ma) and

b%m5rm→r(x5ma), the first two terms represent the d
vergence ofj (11 ln%), and the rest can be combined to o
tain the simple expression

F~1!~x,t !5]x$ j ~x,t !@11 ln%~x,t !#2vr~x,t !%, ~57!
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wherex5ma, andt is the time instant of observation.
The second contributionFm

(2) of Eq. ~54! reduces, in view
of Eqs.~22! and ~23!, for t→0 to

Fm
~2!~x,t !52

rmD

a2 H F11
~2ūm2v2agm!a

2D
G ln

11
av
2D

11e
av
2D

1F12
~2ūm2v1agm!a

2D
G ln

12
av
2D

12e
av
2D

J . ~58!

If, in addition, a→0, it is found to be proportional to
12e:

F~2!~x,t !5~12e!S ~31e!
r~x,t !v2

4D
2

j ~x,t !v
D D . ~59!

Together, Eqs.~57! and ~59! imply in the macroscopic
limit

F~x,t !5]x$ j ~x,t !@11 ln%~x,t !#%2ev]xr~x,t !

2
r~x,t !v2

4D
~12e!2 ~60!

as the leading order contribution of the entropy flow throu
the boundaries of cellm5x/a.

The first term of Eq.~60!,

]x$ j ~x,t !@11 ln%~x,t !#%, ~61!

is a spatial derivative, and can therefore be interpreted
convective entropy flux. It agrees with the thermodynam
result ~14!, where for the multibaker maps we have the e
plicit expressionc512 lnb due to the difference betwee
phase-space and configuration-space densities appeari
the respective expressions. In the case of nondriven sys
this is the full entropy flux.

For a general value ofe, it is natural to identify the hea
contribution to the entropy flux with the rest of Eq.~60! as

F~heat!~x,t !52ev]xr~x,t !2
v2

4D
~12e!2r~x,t !. ~62!

In the Hamiltonian case («51) this expression reduces t
F (heat)52v]x%(x,t), which vanishes for a constant densit
even though there is a finite currentv% running through the
system. A physical interpretation of this observation will
given in the Discussion~Sec. IX!. It is only in the case of a
thermostated multibaker map (e521) when Eq.~62! goes
over into the physical expression

F~heat!~x,t !5v]xr~x,t !2
v2

D
r~x,t ![2

v j ~x,t !

D
~63!

for the heat contribution to the flux. It is related to the de
sity changes of regions mapped between different cells,
requires therefore a spatial variation of the Jacobian of
h

a
c
-

in
ms

-
nd
e

underlying map. Consequently, the inhomogeneities in
densities along they direction play an essential role for th
determination of the heat flux. It cannot be derived from t
dynamics projected to thex axis ~i.e., from the Fokker-
Planck equation! alone.

VIII. STRUCTURAL STABILITY OF THE MACROSCOPIC
RESULTS

In order to be relevant for a thermodynamic description
transport, the results exposed above must not depend on
tails of the procedure for coarse graining. To test whet
this is indeed the case we consider the entropy balance
entropies calculated with respect to two somewhat more
fined descriptions. To this end a finer partitioning consist
of the strips generated by the first iterations of the cells w
be taken as the ‘‘natural’’ partitioning. In one case t
~coarse-grained! densities are allowed to take different va
ues on the stips of this finer partitioning, and coarse grain
is carried out after each time step. In the other case the
ance is established by coarse graining on the full cell a
every second time step. Although these cases correspon
just the simplest possibilities, they clearly indicate the beh
ior expected for arbitrary refinements.

A. Preliminaries

We first extend our notations in order to describe den
ties, entropies, and fluxes defined on the first level of coa
graining. This requires level-2 partitioning~cf. Fig. 2!.

In every cellm there are (k12)2 strips labeled by two
symbols (p,q),where p,q5L,1, . . . ,k,R. The strips have
respective heightssp,q̃5sp̃sq̃/b, and they carry densities
%m(p,q). In the following we call%m(p,q), %m(q), and
%m the level-2, level-1, and level-0 densities, respective
By construction, the level-0 densities coincide with the c
densities considered in the preceding sections. The quan
defined on different levels are related to each other by
conservation of probability. In our multibaker model the
relations read as

FIG. 2. Notations used to describe the level-2 partitioning o
cell. Every strip is labeled by the two-letter sequencep,q, where
p,qP$L,1, . . . ,k,R% label the level-2 strips (p stands for the
level-2 strips within level-1 strips selected by the labelq). To illus-
trate the use of these labels, the heights of a few strips are indic
at the left side of the box.
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%m5(
q

sq̃

b
%m~q!5(

p,q

sp̃sq̃

b2
%m~p,q!. ~64!

Owing to the time evolution of the multibaker map the
are also relations connecting the densities at different t
instants. Let us use prime and double-prime to denote
value of a quantity at timet and 2t, respectively.@Equation
~64! then holds for primed and double-primed densities, to#
By taking into account the origin of the points of a give
region, i.e., the location of their first and second preimag
respectively, we obtain

%m
9 ~p,q!5

bsq

asq̃

%mq
8 ~p!5

b2spsq

a2sp̃sq̃

%mq,p
, ~65!

where the subscript

mq5H m11, q5L

m, q51, . . . ,k

m21, q5R

~66!

@mq,p[(mq)p# is used as a bookkeeping device to indica
the cell where the points in a given strip come from.

To follow the time evolution we again take the initia
densities to be uniform on the full cell, which implie
%m(p,q)5%m for all (p,q), but now we will allow for other
ways of coarse graining. We define the level-i entropySm

( i ) of
cell m as the Gibbs entropy taken with respect to the levei
densities. Thus,Sm

(0)[Sm52G%mln%m,

Sm
~1!52G(

p

sp̃

b
%m~p!ln%m~p!, ~67a!

and

Sm
~2!52G(

p,q

sp̃sq̃

b2
%m~p,q!ln%m~p,q!. ~67b!

For later reference we consider now the level-2 entro
after two time steps, and use Eqs.~65!–~67! to express it in
terms of the densities after one time step,

Sm
~2!9[2G(

p,q

sp̃sq̃

b2
%m

9 ~p,q!ln%m
9 ~p,q! ~68a!

52G(
q

sq

a
%mq

8 ln
bsq

asq̃

1(
q

sq

a
Smq

~1!8.

~68b!

B. Entropy balance on level-1 strips

In order to write down the entropy balance on level

strips we relateSm
(2)9 to Sm

(1)8. To this end we use our previ
ous result Eq.~45! stating that the dynamics on the intern
strips has to be area preserving:si5sĩ , and carry out the
summation overq5L,1, . . . ,k,R to see that
e
e

.

s,

y

Sm
~2!95Sm

~1!82Gr(
p

sp̃

b
%m218 ~p!lnF%m218 ~p!

r

r̃
G

2G l(
p

sp̃

b
%m118 ~p!lnF%m118 ~p!

l

l̃
G

1G~r 1 l !(
p

sp̃

b
%m8 ~p!ln@%m8 ~p!#. ~69!

Notice that the last three terms of Eq.~69! are just the level-
1 generalization of the entropy flux@cf. Eqs.~38! and~39!#.
As a consequence, we find the generalization of Eq.~42! to
be

Sm
~2!95Sm

~1!81DeSm
~1!8. ~70!

This equation states that the net entropy flux through
boundary of cellm is just the difference between the appr
priate Gibbs entropies~in our case the level-2 and level-
entropies taken one time step later!. It is easy to check for the
present model that this relation still holds when differenc
over longer periods of time are considered, and it also
plies to individual rectangles of a refining partition. Th
shows that the difference of the Gibbs entropies taken at
final time with respect to the finest partition and at the init
time taken with respect to the initial partition is theonly
source of the entropy flux. This is reasonable, even in a g
eral context, because this entropy is based on the phase-s
densities, which contain the full information about the tim
evolution of the system.

Based on this observation we can now establish the
tropy balance for the level-1 entropies of cellm. Coarse
graining is applied on the level-1 strips after every applic
tion of the map. It is convenient to start after one time s
on level-1 strips and follow the process for another time st

By subtractingSm
(1)8 expressed via Eq.~70! from Sm

(1)9 we
obtain

Sm
~1!92Sm

~1!8[DSm
~1![DeSm

~1!81D iSm
~1!8, ~71!

where

D iSm
~1!8[Sm

~1!92Sm
~2!9. ~72!

Note thatSm
(1)9 is the value of the level-1 entropy~after two

time steps! when coarse graining is applied at every tim
step to the level-1 strips. Thus, Eq.~72! is the immediate
generalization of Eq.~41! to entropies that are coarse grain
at the first level of refinement. The irreversible change
entropy is again due to the difference between the Gi
entropy and its coarse-grained counterpart. Note that
~72! holds at any time: in particular it is also valid with on
prime less on both sides.

C. Entropy balance over two time steps

We are also interested in the entropy balance for
level-0 entropy when coarse graining is applied only af
every second iteration of the map. In other words, we wish
establish the balance equation
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Sm
~0!92Sm

~0![D~2!Sm
~0![De

~2!Sm
~0!1D i

~2!Sm
~0! , ~73!

where the superscript(2) of D (2) indicates that tempora
changes are considered with a time lag of 2t. The entropy
flux De

(2)Sm
(1) through cellm is the sum of the net fluxe

during the first and the second time step, yielding

De
~2!Sm

~0!5DeSm
~0!1DeSm

~1!852Sm
~0!1Sm

~2!9. ~74!

Here, we used the relationDeSm
(0)5Sm

(1)82Sm
(0) @insert Eqs.

~43! and~45! into Eq.~42!# and Eq.~70! to arrive at the final
equality. Inserting this expression for the two-step flux in
Eq. ~73! we find for the irreversible entropy change

D i
~2!Sm

~0!5Sm
~0!92Sm

~2!9. ~75!

This can also be expressed as

D i
~2!Sm

~0!5D iSm
~0!81D iSm

~1!8, ~76!

whereD iSm
(0)5Sm

(0)82Sm
(1)8 @cf. Eqs.~41! and~72!#, showing

that the irreversible change can be expressed as the su
two contributions: the first results from comparing t
level-1 entropy with its value obtained for level-0 resoluti
and the second results from comparing the level-2 entr
with its value obtained for level-1 resolution.

D. Relations among different expressions

Equation ~72! relates the rate of irreversible entrop
change to the difference between entropies calculated
respect to densities of different resolutions. It is natural
compare it with the irreversible changeD iSm

(0) obtained ear-
lier @Eq. ~42!# for the same time period~one unit! by using a
coarse graining over the full cell. We define the differen
dD iSm by writing

D iSm
~1!85D iSm

~0!1dD iSm . ~77!

In the same spirit we also have to compare the entr
productionD i

(2)Sm
(0) , where level-0 coarse graining is don

after two time steps, with the value of the same quan
obtained by doing level-0 coarse graining after each ti
step. The latter is the sum of the single-step entropy prod
tions:

@D iSm
~0!#2 steps[D iSm

~0!1D iSm
~0!8. ~78!

In view of Eq. ~76! we find

D i
~2!Sm

~0!5@D iSm
~0!#2 steps1dD iSm , ~79!

i.e., the difference is againdD iSm . It is thus sufficient to
work out this latter quantity in order to find the differenc
between different approaches.
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E. Evaluation of dD iSm

First we note that

Sm
~1!9[2G(

q

sq̃

b
%m

9 ~q!ln%m
9 ~q!

52G(
q

sq

a
%mq

8 ln
bsq

asq̃

1(
q

sq

a
Smq

~0!8. ~80!

Together with Eq.~68b! this implies that

D iSm
~1!8[Sm

~1!92Sm
~2!9

5(
q

sq

a
@Smq

~0!82Smq

~1!8#

5D iSm
~0!2r @D iSm

~0!2D iSm21
~0! #2 l @D iSm

~0!2D iSm11
~0! #.

~81!

Using Eq.~22! to expressr and l in terms of the transpor
parameters and of the time and length units, we obtain

dD iSm5
tD

a2 S 11
tv2

2D D @D iSm21
~0! 1D iSm11

~0! 22D iSm
~0!#

2
tv
2a

@D iSm11
~0! 2D iSm21

~0! #. ~82!

SinceD iSm
(0) is of orderta @after all,D iSm

(0)/(at) approaches
a finite limit, the irreversible entropy production per un
length~volume!#, it is already clear from here thatdD iSm is
of ordert2a. To see this in detail notice that in Eq.~82! the
expressions in square brackets are discrete versions of sp
derivatives. In the limit of large spatial extension therefo
we have

dD iS5tDS 11
tv2

2D D ]x
2D iS

~0!2tv]xD iS
~0!. ~83!

For well-posed physical problems we expectD iSm
(0)/(at) to

approach a function with finite derivatives inx. This implies
that dD iSm /(at) possesses a well-defined limit ofa→0 for
any fixedt, but vanishesfor t→0. In other words, the cor-
rections to boths (irr) andP(irr) disappear in the large system
limit. In this limit different prescriptions using different way
of coarse graining to calculate the rate of irreversible entro
production give indeed the same results. Similarly, one
check that also the expressions of the flux possess a w
defined macroscopic limit. As a consequence, the full
tropy balance equation is independent of the way of coa
graining.

For sake of lucidity we only presented the calculations
the two simplest cases. We stress, however, that the a
ment is valid in general. Indeed, all calculations can be g
eralized in a straight-forward way to account for averag
only after everyt time steps on any finite leveln. All these
approaches only differ in terms that may be expressed
product oft and spatial derivatives of the macroscopic ra
of irreversible entropy production. For largert and n more
and higher order derivatives appear.
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IX. DISCUSSION

In this paper we have illustrated that in dynamical s
tems modeling transport the following holds true.

~i! A coarse-grained version of the Gibbs entropy is
natural extension of the concept of thermodynamic entro

~ii ! An entropy balance equation can be derived in pr
erly or improperly thermostated models, provided the int
cell dynamics is Hamiltonian.

~iii ! The entropy current into the heat bath and into
particle reservoirs can be identified.

~iv! An agreement with nonequilibrium thermodynami
can be found only for the properly thermostated~i.e., dissi-
pative with time reversal symmetry! model (e521) in its
macroscopic limit.

~v! The details of the phase-space densities can be
lowed with enhanced resolution, but upon reaching the fin
level of observation always the same amount of entrop
produced in the large system limit.

~vi! There is reason to believe that the formulaP(irr)

5u2/D for the rate of irreversible specific entropy produ
tion in the large system limit is valid beyond linear therm
dynamics, since the derivation of entropy production rel
upon dynamical concepts.

~vii ! The entropy-balance equation cannot be deriv
from the projected dynamics onto the direction of transp
alone if any kind of thermostating~dissipation! is present.

In order to have a better understanding of the last st
ment, it is worth mentioning that a ‘‘projected’’ entropySp

different fromS(G) can be defined with respect to the ma
densityr(x,t) @i.e., the phase-space density projected o
the direction of transport#:

Sp~ t !52E r~x,t !lnr~x,t !dx. ~84!

This entropy contains information about the inhomogenei
of the distribution along thex axis. The dynamics of the
density sp(x,t)52r(x,t)lnr(x,t) of this entropy immedi-
ately follows from the advection-diffusion equation~5!. A
direct substitution shows that an entropy balance equa
exists in the form

] tsp52]xj sp
1sp ~85!

with

j sp
~x,t !52 j ~x,t !@11 lnr~x,t !#1vr~x,t ! ~86!

as the entropy current, and

sp5D
@]xr~x,t !#2

r~x,t !
~87!

as the entropy production ofsp . This rate of irreversible
entropy production is always positive. However, in the ca
of a nonvanishing drift it is markedly different from the the
modynamic form%u2/D. This is in agreement with our pre
vious observation that the projected density cannot con
information about the phase-space contraction along thy
axis giving rise to the heat current into a thermostat. T
-
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e

projected density merely reflects the entropy changes rel
to the coupling to particle reservoirs.

To find a proper interpretation for the termv% in j sp
, let

us consider the balance ofsp from the point of view of an
observer moving with velocityu0 to the right. This corre-
sponds to the transformation%(x,t)→%(x2u0t,t), which
impliesv→v2u0 and j→ j 2u0% in the advection-diffusion
equation. In the entropy balance equation the change in
time derivative is exactly compensated by the change of
flux so that the rate of irreversible entropy production
mainsinvariant. For the special choice ofu05v the case of
a pure diffusion is recovered. Then, and only then, the p
jected density gives rise to an entropy production cor
sponding to Gaspard’s result@25#, i.e., s (irr)5sp .

In view of these observations we can say that the Ham
tonian version (e51) of our multibaker model correspond
to a purely diffusive problem observed from the referen
frame moving to the left with velocityv. The presence of a
term vr in the total currentj in this system is then due to
Galilei transformation and must not be identified with a cu
rent generated by an external field.

We expect our results to be generic for generaliz
Anosov systems. Although our model is piecewise linear,
general features are valid in a much broader class of syst
since smooth dynamical systems appear on sufficiently~but
not infinitesimally! small scales to be piecewise linear@39#.
Thus we expect more general transport models to be w
approximated on small scales via multibaker maps that m
have many more strips and columns~but of finite number!
than ours, in different geometrical arrangements. At t
point our work complements the chaoticity hypothesis
Gallavotti and Cohen@6,24,27#. In order to derive thermody-
namic behavior, they assume hyperbolicity, and that the
erage phase-space contraction of the system is just the ra
irreversible entropy production. The requirement of hyperb
licity was stated as an extension of the ergodicity hypothe
in order to cover also nonequilibrium phenomena. Toget
with time reversibility, it might very well be a sufficiently
good approximation to construct models for transport. Ho
ever, the requirement about the equivalence of aver
phase-space contraction and the rate of irreversible ent
production was up to now based on plausible physical ar
ments @2,7,20# without introducing the concept of entrop
and its balance equation. Here, we were able to demons
that this property can be derived for periodic driven therm
stated systems with the use of coarse-grained entropies
we also pointed out, this relation is a special case of a m
general relation: in the presence of particle reservoirs giv
rise to diffusion currents, there are additional contributions
the entropy production from the mixing of phase-space
gions with different~coarse-grained! densities. In the case o
pure diffusion when no dissipation is needed, this effec
responsible for the entire entropy production@25#, but in the
simultaneous presence of both diffusion and driving~thermo-
stating! an interplay of both effects can be observed.
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